In [ ]:
Copied!
import urban_mapper as um
from urban_mapper.pipeline import UrbanPipeline
data = (
um.UrbanMapper()
.loader
.from_huggingface("oscur/NYC_vehicle_collisions")
.with_columns(longitude_column="LONGITUDE", latitude_column="LATITUDE")
.load()
)
data['LONGITUDE'] = data['LONGITUDE'].astype(float)
data['LATITUDE'] = data['LATITUDE'].astype(float)
data.to_csv("./NYC_Motor_Vehicle_Collisions_Mar_12_2025.csv")
import urban_mapper as um
from urban_mapper.pipeline import UrbanPipeline
data = (
um.UrbanMapper()
.loader
.from_huggingface("oscur/NYC_vehicle_collisions")
.with_columns(longitude_column="LONGITUDE", latitude_column="LATITUDE")
.load()
)
data['LONGITUDE'] = data['LONGITUDE'].astype(float)
data['LATITUDE'] = data['LATITUDE'].astype(float)
data.to_csv("./NYC_Motor_Vehicle_Collisions_Mar_12_2025.csv")
In [ ]:
Copied!
import urban_mapper as um
from urban_mapper.pipeline import UrbanPipeline
# Define the pipeline
pipeline = UrbanPipeline([
("urban_layer", (
um.UrbanMapper().urban_layer
.with_type("streets_intersections")
.from_place("Downtown Brooklyn, New York City, USA", network_type="drive")
.with_mapping(
longitude_column="LONGITUDE",
latitude_column="LATITUDE",
output_column="nearest_intersection"
)
.build()
)),
("loader", (
um.UrbanMapper().loader
.from_file("./NYC_Motor_Vehicle_Collisions_Mar_12_2025.csv")
.with_columns(longitude_column="LONGITUDE", latitude_column="LATITUDE")
.build()
)),
("imputer", (
um.UrbanMapper().imputer
.with_type("SimpleGeoImputer")
.on_columns("LONGITUDE", "LATITUDE")
.build()
)),
("filter", um.UrbanMapper().filter.with_type("BoundingBoxFilter").build()),
("enrich_injuries", (
um.UrbanMapper().enricher
.with_data(group_by="nearest_intersection", values_from="NUMBER OF PERSONS INJURED")
.aggregate_by(method="sum", output_column="total_injuries")
.build()
)),
("enrich_fatalities", (
um.UrbanMapper().enricher
.with_data(group_by="nearest_intersection", values_from="NUMBER OF PERSONS KILLED")
.aggregate_by(method="sum", output_column="total_fatalities")
.build()
)),
("visualiser", (
um.UrbanMapper().visual
.with_type("Interactive")
.with_style({"tiles": "CartoDB dark_matter", "colorbar_text_color": "white"})
.build()
))
])
import urban_mapper as um
from urban_mapper.pipeline import UrbanPipeline
# Define the pipeline
pipeline = UrbanPipeline([
("urban_layer", (
um.UrbanMapper().urban_layer
.with_type("streets_intersections")
.from_place("Downtown Brooklyn, New York City, USA", network_type="drive")
.with_mapping(
longitude_column="LONGITUDE",
latitude_column="LATITUDE",
output_column="nearest_intersection"
)
.build()
)),
("loader", (
um.UrbanMapper().loader
.from_file("./NYC_Motor_Vehicle_Collisions_Mar_12_2025.csv")
.with_columns(longitude_column="LONGITUDE", latitude_column="LATITUDE")
.build()
)),
("imputer", (
um.UrbanMapper().imputer
.with_type("SimpleGeoImputer")
.on_columns("LONGITUDE", "LATITUDE")
.build()
)),
("filter", um.UrbanMapper().filter.with_type("BoundingBoxFilter").build()),
("enrich_injuries", (
um.UrbanMapper().enricher
.with_data(group_by="nearest_intersection", values_from="NUMBER OF PERSONS INJURED")
.aggregate_by(method="sum", output_column="total_injuries")
.build()
)),
("enrich_fatalities", (
um.UrbanMapper().enricher
.with_data(group_by="nearest_intersection", values_from="NUMBER OF PERSONS KILLED")
.aggregate_by(method="sum", output_column="total_fatalities")
.build()
)),
("visualiser", (
um.UrbanMapper().visual
.with_type("Interactive")
.with_style({"tiles": "CartoDB dark_matter", "colorbar_text_color": "white"})
.build()
))
])
In [ ]:
Copied!
# Execute the pipeline
mapped_data, enriched_layer = pipeline.compose_transform()
# Execute the pipeline
mapped_data, enriched_layer = pipeline.compose_transform()
In [ ]:
Copied!
# Visualize results
fig = pipeline.visualise(["total_injuries", "total_fatalities"])
fig
# Visualize results
fig = pipeline.visualise(["total_injuries", "total_fatalities"])
fig
In [ ]:
Copied!
# Save the pipeline
pipeline.save("./collisions_advanced_pipeline.dill")
# Save the pipeline
pipeline.save("./collisions_advanced_pipeline.dill")