Loaders¶
What is the loader module?
The loader
module is responsible for loading geospatial data into UrbanMapper
.
It provides a unified interface for loading various data formats, including shapefiles
, parquet
, and CSV
files
with geospatial information.
UrbanMapper
steps support using multiple datasets. The user can create multiple loader instances, one for each dataset,
combine them in a single dictionary with suitable keys, and use it in your pipeline.
Meanwhile, we recommend to look through the Example
's Loader for a more hands-on introduction about
the Loader module and its usage.
Documentation Under Alpha Construction
This documentation is in its early stages and still being developed. The API may therefore change, and some parts might be incomplete or inaccurate.
Use at your own risk, and please report anything that seems incorrect
/ outdated
you find.
LoaderBase
¶
Bases: ABC
Base Class For Loaders
.
This abstract class defines the common interface that all loader implementations
must implement. Loaders
are responsible for reading spatial data from various
file formats and converting them to GeoDataFrames
data structure. They handle coordinate system
transformations and validation of required spatial columns.
Attributes:
Name | Type | Description |
---|---|---|
file_path |
Path
|
Path to the file to load. |
latitude_column |
str
|
Name of the column containing latitude values. |
longitude_column |
str
|
Name of the column containing longitude values. |
coordinate_reference_system |
str
|
The coordinate reference system to use. Default: |
additional_loader_parameters |
Dict[str, Any]
|
Additional parameters specific to the loader implementation. Consider this as |
Source code in src/urban_mapper/modules/loader/abc_loader.py
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
|
load_data_from_file()
¶
Load spatial data from a file.
This is the main public method for using loaders
. It performs validation
on the inputs before delegating to the implementation-specific _load_data_from_file
method.
It also ensures the file exists and that the coordinate reference system is properly set.
Returns:
Type | Description |
---|---|
GeoDataFrame
|
A |
Raises:
Type | Description |
---|---|
FileNotFoundError
|
If the file does not exist. |
ValueError
|
If required columns are missing or the file format is invalid. |
Examples:
>>> from urban_mapper.modules.loader import CSVLoader
>>> loader = CSVLoader("taxi_data.csv", latitude_column="pickup_lat", longitude_column="pickup_lng")
>>> gdf = loader.load_data_from_file()
Source code in src/urban_mapper/modules/loader/abc_loader.py
_load_data_from_file()
abstractmethod
¶
Internal implementation method for loading data from a file.
This method is called by load_data_from_file()
after validation is performed.
Method Not Implemented
This method must be implemented by subclasses. It should contain the logic
for reading the file and converting it to a GeoDataFrame
.
Returns:
Type | Description |
---|---|
Any
|
A |
Any
|
Raster Loader for which two loaders exist : one which return a |
Any
|
and one which return the data in a 3D NumpyArray). |
Raises:
Type | Description |
---|---|
ValueError
|
If required columns are missing or the file format is invalid. |
FileNotFoundError
|
If the file does not exist. |
Source code in src/urban_mapper/modules/loader/abc_loader.py
preview(format='ascii')
abstractmethod
¶
Generate a preview of the instance's loader
.
Creates a summary representation of the loader for quick inspection during UrbanMapper's analysis workflow.
Method Not Implemented
This method must be implemented by subclasses. It should provide a preview of the loader's configuration and data. Make sure to support all formats.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
format
|
str
|
The output format for the preview. Options include:
|
'ascii'
|
Returns:
Type | Description |
---|---|
Any
|
A representation of the |
Any
|
Return type varies based on the format parameter. |
Raises:
Type | Description |
---|---|
ValueError
|
If an unsupported format is requested. |
Source code in src/urban_mapper/modules/loader/abc_loader.py
CSVLoader
¶
Bases: LoaderBase
Loader for CSV
files containing spatial data.
This loader reads data from CSV
(or other delimiter-separated) files and
converts them to GeoDataFrames
with point geometries. It requires latitude
and longitude columns to create point geometries for each row.
Attributes:
Name | Type | Description |
---|---|---|
file_path |
Path
|
Path to the |
latitude_column |
str
|
Name of the column containing latitude values. |
longitude_column |
str
|
Name of the column containing longitude values. |
coordinate_reference_system |
str
|
The coordinate reference system to use. Default: |
separator |
str
|
The delimiter character used in the CSV file. Default: |
encoding |
str
|
The character encoding of the CSV file. Default: |
Examples:
>>> from urban_mapper.modules.loader import CSVLoader
>>>
>>> # Basic usage
>>> loader = CSVLoader(
... file_path="taxi_trips.csv",
... latitude_column="pickup_lat",
... longitude_column="pickup_lng"
... )
>>> gdf = loader.load_data_from_file()
>>>
>>> # With custom separator and encoding
>>> loader = CSVLoader(
... file_path="custom_data.csv",
... latitude_column="lat",
... longitude_column="lng",
... separator=";",
... encoding="latin-1"
... )
>>> gdf = loader.load_data_from_file()
Source code in src/urban_mapper/modules/loader/loaders/csv_loader.py
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
|
_load_data_from_file()
¶
Load data from a CSV file and convert it to a GeoDataFrame
.
This method reads a CSV
file using pandas, validates the latitude and
longitude columns, and converts the data to a GeoDataFrame
with point
geometries using the specified coordinate reference system.
Returns:
Type | Description |
---|---|
GeoDataFrame
|
A |
GeoDataFrame
|
created from the latitude and longitude columns. |
Raises:
Type | Description |
---|---|
ValueError
|
If latitude_column or longitude_column is None. |
ValueError
|
If the specified columns are not found in the CSV file. |
ParserError
|
If the CSV file cannot be parsed. |
UnicodeDecodeError
|
If the file encoding is incorrect. |
Source code in src/urban_mapper/modules/loader/loaders/csv_loader.py
preview(format='ascii')
¶
Generate a preview of this CSV
loader.
Creates a summary representation of the loader for quick inspection.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
format
|
str
|
The output format for the preview. Options include:
|
'ascii'
|
Returns:
Type | Description |
---|---|
Any
|
A string or dictionary representing the loader, depending on the format. |
Raises:
Type | Description |
---|---|
ValueError
|
If an unsupported format is requested. |
Source code in src/urban_mapper/modules/loader/loaders/csv_loader.py
ParquetLoader
¶
Bases: LoaderBase
Loader for Parquet
files containing spatial data.
This loader reads data from Parquet
files and converts them to GeoDataFrames
with point geometries. It requires latitude and longitude columns to create
point geometries for each row.
Attributes:
Name | Type | Description |
---|---|---|
file_path |
Union[str, Path]
|
Path to the Parquet file to load. |
latitude_column |
Optional[str]
|
Name of the column containing latitude values. Default: |
longitude_column |
Optional[str]
|
Name of the column containing longitude values. Default: |
coordinate_reference_system |
str
|
The coordinate reference system to use. Default: |
engine |
str
|
The engine to use for reading Parquet files. Default: |
columns |
Optional[list[str]]
|
List of columns to read from the Parquet file. Default: |
Examples:
>>> from urban_mapper.modules.loader import ParquetLoader
>>>
>>> # Basic usage
>>> loader = ParquetLoader(
... file_path="data.parquet",
... latitude_column="lat",
... longitude_column="lon"
... )
>>> gdf = loader.load_data_from_file()
>>>
>>> # With custom columns and engine
>>> loader = ParquetLoader(
... file_path="data.parquet",
... latitude_column="latitude",
... longitude_column="longitude",
... engine="fastparquet",
... columns=["latitude", "longitude", "value"]
... )
>>> gdf = loader.load_data_from_file()
Source code in src/urban_mapper/modules/loader/loaders/parquet_loader.py
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
|
_load_data_from_file()
¶
Load data from a Parquet
file and convert it to a GeoDataFrame
.
This method reads a Parquet
file using pandas
, validates the latitude and
longitude columns, and converts the data to a GeoDataFrame
with point
geometries using the specified coordinate reference system.
Returns:
Type | Description |
---|---|
GeoDataFrame
|
A |
GeoDataFrame
|
created from the latitude and longitude columns. |
Raises:
Type | Description |
---|---|
ValueError
|
If |
ValueError
|
If the specified latitude or longitude columns are not found in the Parquet file. |
IOError
|
If the Parquet file cannot be read. |
Source code in src/urban_mapper/modules/loader/loaders/parquet_loader.py
preview(format='ascii')
¶
Generate a preview of this Parquet
loader.
Creates a summary representation of the loader for quick inspection.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
format
|
str
|
The output format for the preview. Options include:
|
'ascii'
|
Returns:
Type | Description |
---|---|
Any
|
A string or dictionary representing the loader, depending on the format. |
Raises:
Type | Description |
---|---|
ValueError
|
If an unsupported format is requested. |
Source code in src/urban_mapper/modules/loader/loaders/parquet_loader.py
ShapefileLoader
¶
Bases: LoaderBase
Loader for shapefiles
containing spatial data.
This loader reads data from shapefiles
and returns a GeoDataFrame
. Shapefiles
inherently contain geometry information, so explicit latitude and longitude
columns are not required. However, if specified, they can be used; otherwise,
representative points
are generated.
Representative points
are a simplified representation of the geometry, which can be
useful for visualisations or when the geometry is complex. The loader will
automatically create temporary columns for latitude and longitude if they are not
provided or if the specified columns contain only NaN
values.
Attributes:
Name | Type | Description |
---|---|---|
file_path |
Union[str, Path]
|
Path to the |
latitude_column |
Optional[str]
|
Name of the column containing latitude values. If not provided or empty,
a temporary latitude column is generated from representative points. Default: |
longitude_column |
Optional[str]
|
Name of the column containing longitude values. If not provided or empty,
a temporary longitude column is generated from representative points. Default: |
coordinate_reference_system |
str
|
The coordinate reference system to use. Default: |
Examples:
>>> from urban_mapper.modules.loader import ShapefileLoader
>>>
>>> # Basic usage
>>> loader = ShapefileLoader(
... file_path="data.shp"
... )
>>> gdf = loader.load_data_from_file()
>>>
>>> # With specified latitude and longitude columns
>>> loader = ShapefileLoader(
... file_path="data.shp",
... latitude_column="lat",
... longitude_column="lon"
... )
>>> gdf = loader.load_data_from_file()
Source code in src/urban_mapper/modules/loader/loaders/shapefile_loader.py
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
|
_load_data_from_file()
¶
Load data from a shapefile and return a GeoDataFrame
.
This method reads a shapefile
using geopandas, ensures it has a geometry column,
reprojects it to the specified CRS
if necessary, and handles latitude and
longitude columns. If latitude and longitude columns are not provided or are
empty, it generates temporary columns using representative points
of the geometries.
Returns:
Type | Description |
---|---|
GeoDataFrame
|
A |
GeoDataFrame
|
latitude/longitude columns as specified or generated. |
Raises:
Type | Description |
---|---|
ValueError
|
If no geometry column is found in the shapefile. |
Exception
|
If the shapefile cannot be read (e.g., file not found or invalid format). |
Source code in src/urban_mapper/modules/loader/loaders/shapefile_loader.py
preview(format='ascii')
¶
Generate a preview of this CSV
loader.
Creates a summary representation of the loader for quick inspection.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
format
|
str
|
The output format for the preview. Options include:
|
'ascii'
|
Returns:
Type | Description |
---|---|
Any
|
A string or dictionary representing the loader, depending on the format. |
Raises:
Type | Description |
---|---|
ValueError
|
If an unsupported format is requested. |
Source code in src/urban_mapper/modules/loader/loaders/shapefile_loader.py
LoaderFactory
¶
Factory class for creating and configuring data loaders.
This class implements a fluent chaining methods-based interface for creating and configuring data loaders.
The factory manages the details of loader instantiation
, coordinate reference system
conversion, column mapping
, and other data loading concerns, providing a consistent
interface regardless of the underlying data source.
Attributes:
Name | Type | Description |
---|---|---|
source_type |
Optional[str]
|
The type of data source ("file" or "dataframe"). |
source_data |
Optional[Union[str, DataFrame, GeoDataFrame]]
|
The actual data source (file path or dataframe). |
latitude_column |
Optional[str]
|
The name of the column containing latitude values. |
longitude_column |
Optional[str]
|
The name of the column containing longitude values. |
crs |
str
|
The coordinate reference system to use for the loaded data. |
_instance |
Optional[LoaderBase]
|
The underlying loader instance (internal use only). |
_preview |
Optional[dict]
|
Preview configuration (internal use only). |
Examples:
>>> from urban_mapper import UrbanMapper
>>>
>>> # Initialise UrbanMapper
>>> mapper = UrbanMapper()
>>>
>>> # Load data from a CSV file with coordinate columns
>>> gdf = (
... mapper.loader\
... .from_file("your_file_path.csv")\
... .with_columns(longitude_column="lon", latitude_column="lat")\
... .load()
... )
>>>
>>> # Load data from a GeoDataFrame
>>> import geopandas as gpd
>>> existing_data = gpd.read_file("data/some_shapefile.shp")
>>> gdf = mapper.loader.from_dataframe(existing_data).load() # Concise inline manner
Source code in src/urban_mapper/modules/loader/loader_factory.py
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 |
|
from_file(file_path)
¶
Configure the factory to load data from a file.
This method sets up the factory to load data from a file path. The file format
is determined by the file extension. Supported formats include CSV
, shapefile
,
and Parquet
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
file_path
|
str
|
Path to the data file to load. |
required |
Returns:
Type | Description |
---|---|
LoaderFactory
|
The LoaderFactory instance for method chaining. |
Examples:
>>> loader = mapper.loader.from_file("data/points.csv")
>>> # Next steps would typically be to call with_columns() and load()
Source code in src/urban_mapper/modules/loader/loader_factory.py
from_dataframe(dataframe)
¶
Configure the factory to load data from an existing dataframe.
This method sets up the factory to load data from a pandas DataFrame
or
geopandas GeoDataFrame
. For DataFrames
without geometry, you will need
to call with_columns()
to specify the latitude and longitude columns.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataframe
|
Union[DataFrame, GeoDataFrame]
|
The pandas DataFrame or geopandas GeoDataFrame to load. |
required |
Returns:
Type | Description |
---|---|
LoaderFactory
|
The LoaderFactory instance for method chaining. |
Examples:
>>> import pandas as pd
>>> df = pd.read_csv("data/points.csv")
>>> loader = mapper.loader.from_dataframe(df)
>>> # For regular DataFrames, you must specify coordinate columns:
>>> loader.with_columns(longitude_column="lon", latitude_column="lat")
Source code in src/urban_mapper/modules/loader/loader_factory.py
from_huggingface(repo_id, number_of_rows=None, streaming=False, debug_limit_list_datasets=None)
¶
Load a dataset from Hugging Face's Hub
using the datasets
library.
What Are Hugging Face Datasets?
π€ Hugging Face Datasets is your gateway to a vast list of datasets tailored for various application domains such as urban computing. In a nuthsell, this library simplifies data access, letting you load datasets with a single line of code.
How to Find and Use Datasets: Head to the Hugging Face Datasets Hub, where you can search anything you like (e.g., "PLUTO" for NYC buildings information).
For from_huggingface
, you need the repo_id
of the dataset you want to load. To find the repo_id
, look for the
<namespace>/<dataset_name>
format in each card displaying / dataset's URL.
For example, click on one of the card / dataset of interest, and lookup for the website's URL. E.g. https://huggingface.co/datasets/oscur/pluto
,
the repo_id
is oscur/pluto
. The namespace
is the organisation or user who created the dataset,
and the dataset_name
is the specific dataset name.
In this case, oscur
is the namespace and pluto
is the dataset name.
OSCUR: Pioneering Urban Science
π OSCUR (Open-Source Cyberinfrastructure for Urban Computing) integrates tools for data exploration, analytics, and machine learning, all while fostering a collaborative community to advance urban science.
All datasets used by any of the initiatives under OSCUR are open-source and available on Hugging Face
Datasets Hub. As UrbanMapper
is one of the initiatives under OSCUR, all datasets throughout our examples
and case studies are available under the oscur
namespace.
Feel free to explore our datasets, at https://huggingface.co/oscur.
Load them easily:
Dive deeper at oscur.org for other open-source initiatives and tools.
Potential Errors Explained
Mistakes happenβhereβs what might go wrong and how we help:
If repo_id
is invalid, a ValueError
pops up with smart suggestions powered by
TheFuzz, a fuzzy matching library. We compare your input to
existing datasets and offer the closest matches:
- No Slash (e.g.,
plutoo
): Assumes itβs a dataset name and suggests fullrepo_id
s (e.g.,oscur/pluto
). Or closest matches. - Bad Namespace (e.g.,
oscurq/pluto
): If the namespace doesnβt exist, we suggest similar ones (e.g.,oscur
). - Bad Dataset Name (e.g.,
oscur/plutoo
): If the namespace is valid but the dataset isnβt, we suggest close matches.
Errors come with contextβlike available datasets in a namespaceβso you can fix it fast.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
repo_id
|
str
|
The dataset repository ID on Hugging Face. |
required |
number_of_rows
|
Optional[int]
|
Number of rows to load. Defaults to None. |
None
|
streaming
|
Optional[bool]
|
Whether to use streaming mode. Defaults to False. |
False
|
debug_limit_list_datasets
|
Optional[int]
|
Limit on datasets fetched for error handling. Defaults to None. |
None
|
Returns:
Name | Type | Description |
---|---|---|
LoaderFactory |
LoaderFactory
|
The updated LoaderFactory instance for method chaining. |
Raises:
Type | Description |
---|---|
ValueError
|
If the dataset cannot be loaded due to an invalid |
Examples:
>>> # Load a full dataset
>>> loader = mapper.loader.from_huggingface("oscur/pluto")
>>> gdf = loader.load()
>>> print(gdf.head()) # Next steps: analyze or visualize the data
>>> # Load 500 rows with streaming (i.e without loading the entire dataset)
>>> loader = mapper.loader.from_huggingface("oscur/NYC_311", number_of_rows=500, streaming=True)
>>> gdf = loader.load()
>>> print(gdf.head()) # Next steps: process the loaded subset
>>> # Load 1000 rows without streaming
>>> loader = mapper.loader.from_huggingface("oscur/taxisvis1M", number_of_rows=1000)
>>> gdf = loader.load()
>>> print(gdf.head()) # Next steps: explore the sliced data
>>> # Handle typo in namespace
>>> try:
... loader = mapper.loader.from_huggingface("oscurq/pluto")
... except ValueError as e:
... print(e)
ValueError: The repository 'oscurq' does not exist on Hugging Face. Maybe you meant one of these:
- oscur (similarity: 90%)
- XXX (similarity: 85%)
>>> # Handle typo in dataset name
>>> try:
... loader = mapper.loader.from_huggingface("oscur/plutoo")
... except ValueError as e:
... print(e)
ValueError: The dataset 'plutoo' does not exist in repository 'oscur'. Maybe you meant one of these:
- oscur/pluto (similarity: 90%)
- XXX (similarity: 80%)
>>> # Handle input without namespace
>>> try:
... loader = mapper.loader.from_huggingface("plutoo")
... except ValueError as e:
... print(e)
ValueError: The dataset 'plutoo' does not exist on Hugging Face. Maybe you meant one of these:
- oscur/pluto (similarity: 90%)
- XXX (similarity: 85%)
Source code in src/urban_mapper/modules/loader/loader_factory.py
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
|
with_columns(longitude_column, latitude_column)
¶
Specify the latitude and longitude columns in the data source.
This method configures which columns in the data source contain the latitude
and longitude coordinates. This is required for CSV
and Parquet
files, as well
as for pandas DataFrames
without geometry.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
longitude_column
|
str
|
Name of the column containing longitude values. |
required |
latitude_column
|
str
|
Name of the column containing latitude values. |
required |
Returns:
Type | Description |
---|---|
LoaderFactory
|
The LoaderFactory instance for method chaining. |
Examples:
>>> loader = mapper.loader.from_file("data/points.csv") ... .with_columns(longitude_column="lon", latitude_column="lat")
Source code in src/urban_mapper/modules/loader/loader_factory.py
with_crs(crs=DEFAULT_CRS)
¶
Specify the coordinate reference system for the loaded data.
This method configures the coordinate reference system (CRS)
to use for the loaded
data. If the source data already has a CRS
, it will be converted to the specified CRS
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
crs
|
str
|
The coordinate reference system to use, in any format accepted by geopandas
(default: |
DEFAULT_CRS
|
Returns:
Type | Description |
---|---|
LoaderFactory
|
The LoaderFactory instance for method chaining. |
Examples:
>>> loader = mapper.loader.from_file("data/points.csv") ... .with_columns(longitude_column="lon", latitude_column="lat") ... .with_crs("EPSG:3857") # Use Web Mercator projection
Source code in src/urban_mapper/modules/loader/loader_factory.py
with_preview(format='ascii')
¶
Configure the factory to display a preview after loading or building.
This method configures the factory to automatically display a preview after
loading data with load()
or building a loader with build()
. It's a convenient
way to inspect the loader configuration and the loaded data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
format
|
The format to display the preview in (default: "ascii").
|
'ascii'
|
Returns:
Type | Description |
---|---|
LoaderFactory
|
The LoaderFactory instance for method chaining. |
Examples:
>>> # Auto-preview after loading
>>> gdf = mapper.loader.from_file("data/points.csv") ... .with_columns(longitude_column="lon", latitude_column="lat") ... .with_preview(format="json") ... .load()
Source code in src/urban_mapper/modules/loader/loader_factory.py
load(coordinate_reference_system=DEFAULT_CRS)
¶
Load the data and return it as a GeoDataFrame
or raster object.
This method loads the data from the configured source and returns it as a
geopandas GeoDataFrame
. It handles the details of loading from different
source types and formats.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
coordinate_reference_system
|
str
|
The coordinate reference system to use for the loaded data (default: "EPSG:4326", which is standard WGS84 coordinates). |
DEFAULT_CRS
|
Returns:
Type | Description |
---|---|
A GeoDataFrame containing the loaded data. |
Raises:
Type | Description |
---|---|
ValueError
|
If the source type is invalid, the file format is unsupported, or required parameters (like latitude/longitude columns) are missing. |
Examples:
>>> # Load CSV data
>>> gdf = mapper.loader.from_file("data/points.csv") ... .with_columns(longitude_column="lon", latitude_column="lat") ... .load()
>>>
>>> # Load shapefile data
>>> gdf = mapper.loader.from_file("data/boundaries.shp").load()
Source code in src/urban_mapper/modules/loader/loader_factory.py
build()
¶
Build and return a loader
instance without loading the data.
This method creates and returns a loader instance without immediately loading
the data. It is primarily intended for use in the UrbanPipeline
, where the
actual loading is deferred until pipeline execution.
Returns:
Type | Description |
---|---|
LoaderBase
|
A LoaderBase instance configured to load the data when needed. |
Raises:
Type | Description |
---|---|
ValueError
|
If the source type is not supported, the file format is unsupported, or required parameters (like latitude/longitude columns) are missing. |
Note
For most use cases outside of pipelines, using load() is preferred as it directly returns the loaded data.
Examples:
>>> # Creating a pipeline component
>>> loader = mapper.loader.from_file("data/points.csv") ... .with_columns(longitude_column="lon", latitude_column="lat") ... .build()
>>> step_loader_for_pipeline = ("My Loader", loader) # Add this in the list of steps in the `UrbanPipeline`.
Source code in src/urban_mapper/modules/loader/loader_factory.py
preview(format='ascii')
¶
Display a preview of the loader
configuration and settings.
This method generates and displays a preview of the loader
, showing its
configuration
, settings
, and other metadata
. The preview can be displayed
in different formats.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
format
|
The format to display the preview in (default: "ascii").
|
'ascii'
|
Raises:
Type | Description |
---|---|
ValueError
|
If an unsupported format is specified. |
Note
This method requires a loader instance to be available. Call load() or build() first to create an instance.
Examples:
>>> loader = mapper.loader.from_file("data/points.csv") ... .with_columns(longitude_column="lon", latitude_column="lat")
>>> # Preview after loading data
>>> loader.load()
>>> loader.preview()
>>> # Or JSON format
>>> loader.preview(format="json")